Effect of current focusing on the sensitivity of inferior colliculus neurons to amplitude-modulated stimulation.
نویسندگان
چکیده
In multichannel cochlear implants (CIs), current is delivered to specific electrodes along the cochlea in the form of amplitude-modulated pulse trains, to convey temporal and spectral cues. Our previous studies have shown that focused multipolar (FMP) and tripolar (TP) stimulation produce more restricted neural activation and reduced channel interactions in the inferior colliculus (IC) compared with traditional monopolar (MP) stimulation, suggesting that focusing of stimulation could produce better transmission of spectral information. The present study explored the capability of IC neurons to detect modulated CI stimulation with FMP and TP stimulation compared with MP stimulation. The study examined multiunit responses of IC neurons in acutely deafened guinea pigs by systematically varying the stimulation configuration, modulation depth, and stimulation level. Stimuli were sinusoidal amplitude-modulated pulse trains (carrier rate of 120 pulses/s). Modulation sensitivity was quantified by measuring modulation detection thresholds (MDTs), defined as the lowest modulation depth required to differentiate the response of a modulated stimulus from an unmodulated one. Whereas MP stimulation showed significantly lower MDTs than FMP and TP stimulation (P values <0.05) at stimulation ≤2 dB above threshold, all stimulation configurations were found to have similar modulation sensitivities at 4 dB above threshold. There was no difference found in modulation sensitivity between FMP and TP stimulation. The present study demonstrates that current focusing techniques such as FMP and TP can adequately convey amplitude modulation and are comparable to MP stimulation, especially at higher stimulation levels, although there may be some trade-off between spectral and temporal fidelity with current focusing stimulation.
منابع مشابه
Multiparametric corticofugal modulation of collicular duration-tuned neurons: Modulation in the amplitude domain Running title: Corticofugal modulation of collicular neurons
The subcortical auditory nuclei contain not only neurons tuned to a specific frequency, but also those tuned to multiple parameters characterizing a sound. All these neurons are potentially subject to modulation by descending fibers from the auditory cortex (corticofugal modulation). In the past, we electrically stimulated cortical durationtuned neurons of the big brown bat, Eptesicus fuscus, a...
متن کاملMultiparametric corticofugal modulation of collicular duration-tuned neurons: modulation in the amplitude domain.
The subcortical auditory nuclei contain not only neurons tuned to a specific frequency but also those tuned to multiple parameters characterizing a sound. All these neurons are potentially subject to modulation by descending fibers from the auditory cortex (corticofugal modulation). In the past, we electrically stimulated cortical duration-tuned neurons of the big brown bat, Eptesicus fuscus, a...
متن کاملTemporal dynamics of acoustic stimuli enhance amplitude tuning of inferior colliculus neurons.
Sounds in real-world situations seldom occur in isolation. In spite of this, most studies in the auditory system have employed sounds that serve to isolate physiological responses, namely, at low rates of stimulation. It is unclear, however, whether the basic response properties of a neuron derived thereof, such as its amplitude and frequency selectivities, are applicable to real-world situatio...
متن کاملNeural sensitivity to periodicity in the inferior colliculus: evidence for the role of cochlear distortions.
Responses of low characteristic-frequency (CF) neurons in the inferior colliculus were obtained to amplitude-modulated (AM) high-frequency tones in which the modulation rate was equal to the neuron's CF. Despite all spectral components lying outside the pure tone-evoked response areas, discharge rates were modulated by the AM signals. Introducing a low-frequency tone (CF - 1 Hz) to the same ear...
متن کاملResponses of inferior colliculus neurons to amplitude-modulated intracochlear electrical pulses in deaf cats.
Current cochlear prostheses use amplitude-modulated pulse trains to encode acoustic signals. In this study we examined the responses of inferior colliculus (IC) neurons to sinusoidal amplitude-modulated pulses and compared the maximum unmodulated pulse rate (Fmax) to which they responded with the maximum modulation frequency (maxFm) that they followed. Consistent with previous results, response...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 116 3 شماره
صفحات -
تاریخ انتشار 2016